

Technoeconomic Analysis of Heliostat Technologies

Chad Augustine

National Renewable Energy Laboratory

February 3, 2022 • HelioCon Seminar Series

Outline

- Technoeconomic Analysis for CSP
 - Grid-scale
 - Plant-scale
 - Heliostat-scale...
- HelioCon Topic 8: Technoeconomic Analysis Overview
- HelioCon Proposed Baseline Solar Fields
- Preliminary Results

CSP Technoeconomic Analysis

CSP as One of Many Energy Options • conom CSP as a Power Plant echno Heliostats as a CSP Component Heliostat **Components Cost** and Performance

Model Types: Grid Capacity Expansion Grid Unit-Commitment Dispatch

Key Metrics:Installed Capacity (GW)Annual Generation (GWh)Firm Capacity Value (\$/kW)

Table 4. Summary of Solar Futures Study Core Scenarios

Scenario Name	RE & Storage Technologies (ATB 2020)	Demand Flexibility (EFS)	Electricity Demand	Policies
Reference	Moderate	None	AEO2020	Existing policies as of June 2020
Decarbonization (Decarb)	n (Decarb)		Relefence	95% reduction in grid
Decarbonization with Electrification (Decarb+E)	Advanced	Enhanced	EFS High	2005 levels by 2035, 100% by 2050

Source: NREL Solar Futures Study (DOE 2021)

Table 4. Summary of Solar Futures Study Core Scenarios

Scenario Name	RE & Storage Technologies (ATB 2020)	Demand Flexibility (EFS)	Electricity Demand	Policies
Reference	Moderate	None	AEO2020	Existing policies as of June 2020
Decarbonization (Decarb)			Relefence	95% reduction in grid
Decarbonization with Electrification (Decarb+E)	Advanced	Enhanced	EFS High	2005 levels by 2035, 100% by 2050

Source: NREL Solar Futures Study (DOE 2021)

Figure 2 - 4. Capacity by technology in 2020, 2035, and 2050 in core scenarios

Table 4. Summary of Solar Futures Study Core Scenarios

Scenario Name	RE & Storage Technologies (ATB 2020)	Demand Flexibility (EFS)	Electricity Demand	Policies
Reference	Moderate	None	AEO2020	Existing policies as of June 2020
Decarbonization (Decarb)			Relefence	95% reduction in grid
Decarbonization with Electrification (Decarb+E)	Advanced	Enhanced	EFS High	2005 levels by 2035, 100% by 2050

Source: NREL Solar Futures Study (DOE 2021)

Figure 2 - 3. Generation by technology in 2020, 2035, and 2050 in core scenarios

Bio = biomass, Geo = geothermal, Hydro = hydropower, CT = combustion turbine. Hydro includes pumped hydrostorage.

heliostat field mass production conceptual uesign COMPONENCS IIIICgration

Office of

- Energy storage projections in the US are dominated by short-term (2-4 hours) storage needs
- As RE penetration increases, longer storage options compete better
- As 95% CO2 reduction is approached, need for firm capacity value increases

CSP Technoeconomic Analysis

System Advisor Model (SAM)

Financial

Behind-the-meter residential commercial third-party owned Power purchase agreements single owner equity flips sale-leaseback Host/developer Merchant plant Simple LCOE calculator

Biomass

Detailed & PVWatts

heliostat field conceptual design components integration mass production

System Advisor Model (SAM)

No other tool provides detailed, *time-based* financial modeling across multiple market sectors, including complex utility rates, combined with detailed performance modeling

Flexible
 Transparent
 Collaborative

Built-in parametric, stochastic, probability of exceedance P50/P90), and scripting features enable complex questions to be answered quickly and easily

conceptual design •

components

 heliostat field

SAM

Power Tower CSP

- <u>"Modeling Power</u> <u>Towers in SAM"</u> <u>https://www.youtube.c</u> <u>om/watch?v=xVILbvR8</u> <u>MkM</u>
- Inputs grouped by tabs on left
- Uses SolarPILOT to optimize field, tower height, and receiver dimensions

lower (salt), Single owner	Heliostat Field				
ocation and Resource 🃁	Import	X Position	Y Position	^	
	Europet .	330.826 -	1302.04		
lystem Design	Ехроп	-884.703 -	47.7732		
Heliostat Field 🗧	Сору	-1402.95 -	562.913		
	Paste	15/0.82 0	267 021		
ower and Receiver 🛛 📁	Halfastatas	-114.413 -	1338.53		si di kana ang kana a
	Heliostats:	-141.751 -	1335.91		
'ower Cycle	95/3	-1002.61 -	1012.78		tion in the second s
Thormal Storago		401.573 -	789.76		Post of the second s
nerma storage		-169.031 -	1332.73		1000
ystem Control		1100.72 -	905.183		
		- 196.239 -	1329	~	-1500 -1000 -500 0 500 1000 1500
irid		10.5/1 9/15			Position, east-west (m)
ifatime and Degradation	Generate heliostat	layout using to	ower dimension	s Calculate	Optimization Settings
neume and Degradation	Ontimize heliostat	layout and to	ver dimensions	Calculate	
nstallation Costs	Optimize reliostat	layout and tov	ver annensions	Calculate	Initial optimization step size 0.05
	Solar field geometry of	optimization ca	alculates the nur	nber of heliostats	Maximum optimization iterations 200
Operating Costs	Receiver page.	gni, receiver he	eight and diame	ter on lower and	Optimization convergence tolerance 0.001
inoncial Darars stars					
inancial Parameters	Heliostat Properties-				Heliostat Operation
levenue		Heliosta	t width	12.2 m	Heliostat stow/deploy angle 8 deg
		Heliostat	height	12.2 m	Wind stow speed 15 m/s
ncentives	Ratio of ref	flective area to	profile	0.97	Heliostat startup energy 0.025 kWe-hr
		Single heliost	at area	144.37 m ²	Heliostat tracking power 0.055 kWe
Depreciation	Image or	ongie neliose		1.52 mrad	Design point DNI 050 0 W/m ²
lectricity Purchases	intage en	or (stope, singi		1.55 miad	
lectricity i di chases	Keflecte	d image conic	al error	4.327 mrad	Atmospheric Attenuation
	Number	of heliostat fac	cets - X	2	Polynomial coefficient 0 0.006789
	Number	of heliostat fac	cets - Y	8	Polynomial coefficient 1 0.1046 1/km
	Helio	stat focusing n	nethod Ideal	~	Polynomial coefficient 2 -0.017 1/km ²
	Helio	ostat canting r	nethod On-axis	~	Polynomial coefficient 3 0.002845 1/km ³
	Min	ofloctor or d	coiling	0.0	
		enectance and	solling	0.9	Average alternuation IOSS 5.1 76
	Land Area				Solar Field Layout Constraints
	No	on-solar field la	nd area	45 acres	Max. heliostat distance to tower height ratio 8.5
	Solar fie	ld land area m	ultiplier	1	Min. heliostat distance to tower height ratio 0.75
	Sold lie				Tower height 209.0 m
		Base la	nd area	1,900.45 acres	Maximum distance from tower 1776.9 m
		Total la	nd area	1,945.45 acres	Minimum distance from tower 156.9 m
	Total h	eliostat reflect	ive area 1	.382,100.0 m ²	
Simulate >					Mirror Washing Water usage per wash 0.70 1/m ² aper
Parametrics Stochastic					wasnes per year 03

SolarPILOT

"Overview of NREL's SolarPilot(TM) and SolTrace Open-source Software" https://www.youtube.com/watch?v=wiYV2VLqr_k

Solar Power Tower Integrated Layout and Optimization Tool (SolarPILOT)

- Create heliostat layouts
- Simulate receiver flux profiles
- Optimize tower, receiver, and layout configurations
- Integrated SolTRACE raytracing engine
- Accessible by external programs
- Open source

CSP as a **Power Plant**

The Role of Concentrating Solar-Thermal Technologies in a Decarbonized U.S. Grid

Chad Augustine, Craig Turchi, and Mark Mehos National Renewable Energy Laboratory

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Technical Report NREL/TP-5700-80574 September 2021

CSP as a **Power Plant**

Direct Capital Costs for 100 MWe Gen2 CSP Plant Excludes indirect costs, contingency, and sales tax

A Pathway To \$0.05 per kWh for CSP

components • i

integration •

mass production

heliostat field

CSP Technoeconomic Analysis

Heliostat Analysis Modes

- Bottom-Up Analysis
 - In-depth, expert-level analysis of heliostat based on its components
 - Describe heliostat design, components, construction, performance, etc. in as much detail as possible
 - Goal is to "build" heliostat in as much detail as possible
 - Used to develop detailed cost estimates and identify cost drivers, key components, and specific opportunities for improvement
- Top-Down Analysis
 - High-level view of heliostat break it down into its key metrics
 - Blackbox-ish, as simple a description as necessary
 - Goal is to identify how heliostat cost and performance affects larger system
 - Used to identify research areas and quantify their potential impact

19

Bottom-Up Cost Analysis

- Bottom-up cost estimate for sbp Stellio (commercial) and Solar Dynamics Drop-C (advanced) heliostats
- Uses Design for Manufacture and Assembly (DFMA)
- Assumes field for 80 MWe CSP power tower with 12-16 hours TES, ~1.1 million m² of heliostat surface area

Cost Update: Commercial and Advanced Heliostat Collectors

Parthiv Kurup, Sertaç Akar, Stephen Glynn, Chad Augustine, and Patrick Davenport

National Renewable Energy Laboratory

Technical Report NREL/TP-7A40-80482 February 2022

Bottom-Up Cost Analysis

- Design for Manufacture and Assembly (DFMA)
 - Model the manufacturing process for each heliostat component (bill of materials – BOM)
 - Includes assembly costs (ex. – welding)
 - Accounts for manufacturing volume

- Cost estimates for purchased components from manufacturers
- Includes on-site construction and installation costs

conceptual design

Bottom-Up Cost Analysis

10000

100

0

Effects of Total cost, \$ manufacturing the SunRing actuator arm plate at various production scales

> mass production conceptual design components integration heliostat field

sbp Stellio Bottom-Up Analysis

~\$127/m² installed cost (±10%)

- ~\$7.5M assembly facility
- Base assembly (15.7%)
- Mirrors (13.4%)

Breakdown by category

- 44% purchased components (e.g., rivets, mirrors, drives)
- 31% manufactured parts (e.g., arms, frame...)

ts • int

integration •

Solar Dynamics Drop-C Ring Bottom-Up Analysis

SBP Stellio Heliostat – Example of Detail

- Fixturing costs associated with welding the subassemblies and manufacturing jigs, (not including the equipment investment), is approximately \$300,000.
- SBP Stellio heliostat assembly process requires
 - 16 person hours per heliostat
 - 5 person hours for the rest of tasks for Pylon installation
- Capital cost for the assembly building, assembly lines, overhead cranes, and rest of equipment such like trolleys, heliostat transportation platforms are based upon the months available for the solar field execution:
 - For 21 months execution = 1 Assembly Lines, CAPEX required of \$7.5M
 - For 15 months execution = 2 Assembly Lines, CAPEX required of \$10.5M

Share of raw material cost and manufacturing cost (including coating) with respect to total cost of main components based on SBP's cost estimates.

Main Component	Raw Material Cost vs Total Cost	Manufacturing Cost + Coating vs Total Cost
Purlins	63%	37%
Cantilever Arms	45%	55%
Boomerang	53%	47%
Central Hub	56%	44%
Pylon Head	49%	51%

CSP Technoeconomic Analysis

26

HelioCon: Technoeconomic Analysis

Topic Objectives:

- 1. Develop baseline heliostat field and benchmark existing heliostat/CSP costs
- 2. Assess R&D ideas from other topics for potential CSP cost reductions (i.e., is it worth studying?)
- 3. Develop TEA tools to aid HelioCon and CSP industry

Team Members: Kenneth Armijo, Sandia (Co-Lead) Alexander Zolar (NREL)

Background and Context

- The TEA topic assumes that other topics will need (us) to model solar fields to fill in knowledge gaps and determine the cost/benefit ratio of their research efforts
- We want to have HelioCon analysis across topics to be done on a consistent "apples-to-apples" comparison as much as possible
- To achieve this, we shall develop a set of base case heliostat fields to be used in HelioCon analysis
 - The base cases should span the reasonable use cases for heliostat fields in the present and future

28

TEA Models Scope

<u>Heliostat Field +</u> <u>Receiver</u>

- Aiming and raytracing models
- Heliostat performance
- Heliostat + Receiver interaction
- Determines thermal energy input to plant (Levelized Cost of Heat – LCOH)

SAM has five main "levers" for exploring heliostat field cost and performance

- 1. Installed heliostat cost (\$/m²)
- 2. Reflected image error (mrad)
- 3. Reflectance (%)
- 4. Field O&M cost (\$/m²/year)
- 5. Construction time (months)

TEA Model Systems View Increasing Scope **Decreasing Detail HTF Flow and** Temperature Heliostat Field **CSP** Plant Heliostat + Receiver Model Model Model Performance Specs LCOE **Capital Costs** Costs... Decreasing Scope **Increasing Detail** heliostat field conceptual design mass production components integration

SAM has five main "levers" for exploring heliostat field cost and performance

Reflected Image Error (mrad)

- Slope error
- Pointing error
- Reflected beam error
- Error from wind load...

Installed Cost (\$/m²)

- Heliostat design
- Material cost
- Manufacturing cost

Installation cost...

Assembly cost

Field O&M Cost (\$/m²/year) •

- Washing schedule
- Design (height)
- Repairs and replacements...

components

integration • n

mass production •

Reflectance (%)

- Material
- Degradation
- Soling rate
- Washing schedule...

Construction Time (months)

- Field installation time
- # of assembly buildings
- Tower install time
- Heliostat calibration...

Baseline #1: Electric^{*} preliminary! – Large Solar Field

Use Case – single surround field around central external receiver to supply thermal energy to thermal power plant

- SAM molten salt power tower default case can serve as base case
 - Net Power Output: 100 MW_e/727 MW_{th}
 - Surround Heliostat Field
 - Solar Multiple: 2.7
 - External Receiver
 - Solar Salt (60% NaNO3/40% KNO3)
 - Max heat flux 1 MW/m2
 - Hot Side Temp: 575°C
 - Cold Side Temp: 290°C

- 1. Installation cost: \$140/m²
- 2. Reflected image optical error: 4.3 mrad
- 3. Reflectance (includes soiling): 90%
- 4. Field O&M cost:
 - Still need to break out field O&M from plant O&M

- Includes availability
- 5. Construction time: 24 months

LCOH Parametric Ar-' reliminary ectrical Field

LCOH – Equivalent P –

Baseline #2: Electric^{*} preliminary – Modular Field

Use Case – single polar field with cavity receiver to supply thermal energy to large thermal power plant fed by one or multiple fields (doesn't matter for base case since we stop at tower/receiver)

- Molten salt power tower
 - Net Equivalent Power Output: 30 MW_e/220 MW_{th}
 - Polar Heliostat Field
 - Solar Multiple: 2.7
 - Cavity Receiver
 - Solar Salt (60% NaNO3/40% KNO3)
 - Hot Side Temp: 575°C
 - Cold Side Temp: 290°C

- 1. Installation cost: \$145/m²
- 2. Reflected image optical error: 4.3 mrad
- 3. Reflectance (includes soiling): 90%
- 4. Field O&M cost: need to break out field O&M from plant O&M
 - Includes availability
- 5. Construction time: 12 months (?)
- Assume this is more efficient (and cost effective) than an external receiver

Baseline #3: Industri- reliminary! Preliminary!

Use Case – single polar field with cavity receiver to supply thermal energy for high-temperature industrial process (ex. - calcination of limestone)

- Molten salt power tower
 - Net Equivalent Power Output: 10 MWth
 - 1.5 MWe equivalent
 - Needs work what is concentration ratio limit?
 - Polar Heliostat Field
 - Solar Multiple: 1.0 (assume no storage)
 - Cavity Receiver
 - Temp: 1,000 °C (continuous process)
 - Receiver is the reactor

- 1. Installation cost: \$145/m²
- 2. Reflected image optical error: 4.3 mrad
- 3. Reflectance (includes soiling): 90%
- 4. Field O&M cost: need to break out field O&M from plant O&M
 - Includes availability
- 5. Construction time: 12 months

Note how for the SAM inputs, the values don't differ among base cases, except for construction time. Analysis should reveal relative importance of parameters to solar field for each base case

Summary – CSP Technoeconomic Analysis

TEA Goals

- Develop Baseline cases
- Consistent assumptions across topics
- Identify and quantify opportunities
- Develop useful tools and models to HelioCon

All models are approximations. Essentially, all models are wrong, but some are useful. However, the approximate nature of the model must always be borne in mind.

George E. P. Box —

AZQUOTES

Questions? Thank you!

www.nrel.gov chad.augustine@nrel.gov

Subscribe to HelioCon:

- Heliostat.Consortium@nrel.gov

More From the HelioCon Seminar Series

- Slides and presentation recording coming soon
- Subscribe to the seminar series or get in touch: <u>heliostat.consortium@nrel.gov</u>
- Access past seminar's here:
 - <u>Dr. Margaret Gordon's seminar on</u> <u>Sandia's CSP capabilities</u>
 - <u>Mark Mehos' seminar on NREL's CSP</u> <u>capabilities</u>

Next Seminar February 16th!

HelioCon Seminar Series: An Undervalued Foundation for Heliostat Technologies – Optical Characterization, Modeling, and Measurement Speaker: Guangdong Zhu, NREL When: 1-2pm Wednesday February 16th Zoom:<u>https://nrel.zoomgov.com/j/1611110823?</u> pwd=Z0NQTIVmZ2NhSXZmbnIwNnhRZWNWQT0 9

